Tutorial #4
Surface Area of a Cone

Finding Surface Area of a Cone Steps

Step One- Finding Slant Height

To find the slant height first you need
to use Pythagorean theorem. Insert for
a put in the height of the cone. For b
put in the the radius. Then solve:
(radius)²+ (height)²= (slant height)².




http://www.utdanacenter.org/k12mathbenchmarks/ images/tasks/coneswrapper_web.jpg
http://www.utdanacenter.org/k12mathbenchmarks/ images/tasks/coneswrapper_web.jpg

Step Two- Solve for the Circumference

Then you find the circumference by
multiplying taking the radius then
multiply it by two and pi. The
circumference it the circle side of the
part of the circle.
external image moz-screenshot.jpg
http://wme.cs.kent.edu/kimpton/  measure_circle.html?  index=/kimpton/measure_index.  html&indexname=back+to+module
http://wme.cs.kent.edu/kimpton/ measure_circle.html? index=/kimpton/measure_index. html&indexname=back+to+module

Step Three- Solve for Part of The Circle

To solve you multiple the slant height by
the circumference and one half. The
formula is:
SA= 1/2 x circumference x slant height.
http://www.mariner.org/exploration/mm_images/ 1998_39_10EnglishQuadrant_large.jpg
http://www.mariner.org/exploration/mm_images/ 1998_39_10EnglishQuadrant_large.jpg

Step Four- Solving for Area of Circle

To solve for the area you need to multiply
the radius² times pi.
Formula:
Area= pi x radius squared
http://wme.cs.kent.edu/kimpton/  measure_circle.html?  index=/kimpton/measure_index.  html&indexname=back+to+module
http://wme.cs.kent.edu/kimpton/ measure_circle.html? index=/kimpton/measure_index. html&indexname=back+to+module

Step Five- Adding Together

The last step is to add everything together.
Now just add the area of the circle plus the
area of the part of the circle.
Formula:
SA= area of circle + area of part of circle
http://upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Plus_sdkfdkfd.svg/400px-Plus_sdkfdkfd.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Plus_sdkfdkfd.svg/400px-Plus_sdkfdkfd.svg.png

Interactive Sites
Interactive Cone
Interactive Cones Two
Real- life Problems
Real Life Problems (9 feet in diameter and 12 feet in height) Find out how much canvas it would take
to cover up the tepee ( hint: subtract the circle or don't add it)
How cones appear in Real Life
More Problems
More Problems One
More Problems Two
More Detail
More Detail
More Detail Two
More Detail Three
More Details Four




Tutorial #5
MATH.jpg
http://math.about.com/od/formulas/ss/surfaceareavol_2.htm




Deeper Insight
Practice Problems
Real Life Application of Surface Area of a Cone